
NEEM Handbook

Michael Beetz, Daniel Beßler, Sebastian Koralewski, Mihai Pomarlan, Abhijit Vyas,
Alina Hawkin, Kaviya Dhanabalachandran, Sascha Jongebloed

CRC Everyday Activity Science and Engineering (EASE)
University Bremen, Am Fallturm 1, 28359 Bremen
ai-office@cs.uni-bremen.de

Summary. The Collaborative Research Center EASE is an interdisciplinary research initiative
at the University of Bremen that attempts to advance our understanding of how human-scale
manipulation tasks can be mastered by robotic agents. The challenge is that the same task
needs to be executed by the robot in different ways depending on, for example, what tools are
available, and how the environment is shaped. The key to solve this issue is generalization.
However, the robot needs to know more then what step it needs to execute next – it further
needs to decide on how the next step is carried out through motions of its body, and interactions
with its environment. In this document, we will describe how these types of information are
represented in the EASE system, how such data-sets are acquired, and how they are stored,
maintained, and curated using a centralized web-service. The goal of this effort is to establish
representations and infrastructure for a shared experience storage with annotated data-sets of
agents performing everyday activities, and to use these data-sets as ground truth data to find
generalizations that do not abstract away from movements, and naive physics.

Contents

1 Introduction 1
1.1 Notation . 3
1.2 Scope . 4
1.3 Overview . 5

2 NEEM-Background 7
2.1 Types of Objects . 8
2.2 Properties of Objects . 9
2.3 Views on Objects . 10

2.3.1 Appearance . 10
2.3.2 Structure . 12
2.3.3 Kinematics . 13
2.3.4 Dynamics . 16
2.3.5 Naive physics . 17

2.4 Data Formats . 18
2.4.1 URDF . 18
2.4.2 DAE . 19

3 NEEM-Narrative 21
3.1 Types of Events . 21
3.2 Roles of Objects . 24
3.3 Views on Events . 24

3.3.1 Occurrence . 24
3.3.2 Participation . 25
3.3.3 Composition . 26
3.3.4 Transformation . 26
3.3.5 Conceptualization . 28
3.3.6 Contextualization . 29

4 NEEM-Experience 31
4.1 Kinematics . 32

4.1.1 Pose data . 32

5 NEEM-Hub 35

3

0 Beetz et al.

5.1 Prerequisite . 36
5.2 Downloading . 37
5.3 Publishing . 38

6 NEEM-Acquisition 41
6.1 Data Structure . 41

6.1.1 Triple data as JSON object 42
6.2 Robot NEEMs . 43

6.2.1 Prerequisite . 43
6.2.2 Recording Narrative Enabled Episodic Memories 44
6.2.3 Add Semantic Support to your Designed Plans 44
6.2.4 Summary . 46

6.3 VR NEEMs . 47
6.3.1 Prerequisite . 47
6.3.2 Recording Virtual Reality Narrative Enabled Episodic Memories 48
6.3.3 Transferring VR-NEEMs into the Knowledge Base 48
6.3.4 Using VR-NEEM Data in CRAM plans 49

7 NEEM Quick-start Guide 51
7.1 NEEM Checklist . 51

7.1.1 Kinematic information with visualization meshes 51
7.1.2 NEEM Data format . 52
7.1.3 Semantic Annotation . 52
7.1.4 Semantic Annotation: KnowRob 53

8 Appendix 55
8.1 Agent owl file . 55
8.2 Environment owl file . 62
References . 65

1

Introduction

D. BESSLER, S. KORALEWSKI, M. POMARLAN

This document, referred to as the “NEEM Handbook” hereafter, describes the
EASE system for episodic memories of everyday activities. It is thought to pro-
vide EASE researchers with compact but still comprehensive information about what
information is contained in NEEMs , how it is represented, acquired, curated and
published.

acquisition

curation
pu

bl
ica

tio
n

NEEM
Background

NEEM
Narrative

NEEM
Experience

NEEM
HUB

observation

experimentationsimulation

Fig. 1. The EASE system for acquisition, curation and publication of episodic memories

2 Beetz et al.

Narrative Enabled Episodic Memories

When somebody talks about the deciding goal in the last soccer world championship
many of us can “replay” the episode in our “mind’s eye”. Those episodic memories can
be seen as abstract descriptions that allow us to recall detailed pieces of information
from any experienced activity. Having those detailed memories, we can use them to
learn general knowledge or map similar memories to unknown situations, so we know
how to behave in the given situation.

EASE integrates episodic memories deeply into the knowledge acquisition, repre-
sentation, and processing system. For every activity the agent performs, observes,
prospects and reads about, it creates an episode and stores it in its memory. An
episode is best understood as a video recording that the agent makes of the ongoing
activity. In addition, those videos are enriched with a very detailed story about the
actions, motions, their purposes, effects and the agent’s sensor information during the
activity.

We define the episodic memories created by our system narrative-enabled episodic
memories (NEEMs). A NEEM consists of the NEEM experience and the NEEM nar-
rative. The NEEM experience captures low-level data such as the agent’s sensor
information, e.g. images and forces, and records of poses of the agent and its detected
objects. NEEM experiences are linked to NEEM narratives, which are stories of the
episode described symbolically. These narratives contain information regarding the
tasks, the context, intended goals, observed effects, etc. The NEEM-experience and
NEEM-narrative combined are so rich of information that the agent can replay an
episode to experience the seen activity anytime again.

NEEMs are representations of experiences acquired through experimentation, reading,
observing, mental simulation, etc. The main goal is to establish a common vocabulary
used to annotate experience data across different tasks, scientific disciplines, and
modalities of acquisition, and to define models for the representation of experience
data. The vocabulary is not just a set of atomic labels, but each label has a formal
definition in an ontology. These definitions are done such that a set of competency
questions about an activitiy can be answered by a knowledge base that is equipped
with the ontology and a collection of NEEMs .

The NEEM model is formally defined in form of an OWL ontology which is based
on the DOLCE+DnS Ultralite (DUL) upper-level ontology [1]. DUL is a carefully
designed ontology that seeks to model general categories underlying human cognition
without making any discipline-specific assumptions. Our extensions of DUL mainly
focus on characterizing different aspects of activities that were not considered in much
detail in DUL, but are relevant for the autonomous robotics scope. These extensions
are part of an ontology that we have called SOMA 1. A NEEM is made of several
patterns defined either in DUL or in SOMA .

1https://ease-crc.github.io/soma

https://ease-crc.github.io/soma

NEEM Handbook 3

While it is possible to create the representations listed in this document through a
custom exporter, it is not advised to do so. Instead, it is advised to interface with the
KnowRob knowledge base 2. KnowRob provides an interface based on predicate log-
ics that allows to interact with NEEMs . The language is a collection of predicates that
can be called by users to ask certain types of competency questions covering different
aspects of activitiy, or to add labels and relationships in the NEEM-narrative . We will
provide example expressions in this document that highlight how the knowledge base
can be used to interact with NEEMs .

1.1 Notation

In this Section, we will shortly introduce the notions and notations that are important
to follow this document.

NEEMs are formally represented using an ontology. An ontology is a collection of
logical axioms in some formal language such as description logic (DL). The entities
that can be described in DL can be either concepts (sometimes known as classes),
and instances. An individual may belong to one or more concepts. A concept may
be subsumed by another concept. Between individuals there may be relations called
object properties, and, in addition, an individual can also have data properties that
link it to some data values. As an example, let us assume that Alice and Bob are both
individuals belonging to the concept Human, and that the object property hasChild
connects Alice to Bob, i.e. the relation asserts that Bob is a child of Alice. We may also
know the height of Alice, which would be represented by a data property hasHeight
whose value could be a string such as 1,7m to represent that she is 1.7m tall. In
the following, to make clear when we are talking about concepts and when about
individuals, we will denote the set of all concepts as T (called the TBox), and the set
of all individuals as A (called the ABox).

It is useful when describing concepts to emphasize the concept names such that it is
clear we reference the concept, and not the colloquial word. As such, Concepts and
relations will be written in a different font. Note that the name of a concept always
starts with an uppercase letter, whereas the name of a relation with a lowercase one.
Any word appearing in a concept or relation name after the first one will always begin
with an uppercase letter.

Ontologies are meant to build on one another, and it is not uncommon for an ontology
to collect thousands of concepts from external ontologies it imports. To prevent name
clashes, in actual usage the names of concepts, relations, and individuals are often
name-spaced. In this document, since we mostly talk about concepts from the SOMA
ontologies, the namespace will not be made explicit. An exception will be made in
some diagrams where we reference concepts defined in more basic ontologies, such

2https://github.com/knowrob/knowrob

https://github.com/knowrob/knowrob

4 Beetz et al.

as those used to define the Ontology Web Language (OWL). An example is a name
such as xsd:double; in this case, xsd is the namespace.

1.2 Scope

The broad scope of this work is to provide information about how robotic manipulation
activities are represented, acquired, curated and published in the EASE system for
episodic memories. We are in particular interested in aspects of interaction forces and
motion characteristics of objects participating in an action, since it is these physical
and geometric considerations that are crucial for successfull action execution. The
goal is to learn models from collections of recorded data semantically annotated
through concepts defined in the NEEM model. The rich semantic annotations enable
querying and filtering the data, such that a robot can formalize a learning problem
for itself and curate its training data to be appropriate for it. Information about how
the data is collected, with what methods, from what agents, in which contexts, is
important for this process, as machine learning techniques are sensitive to training
data biases. Note that in principle episodes can be stored of any agent performing
any activity, and in actuality many of the NEEMs we expect to store will come
from humans demonstrating how to perform a task. NEEMs are therefore not simply
intended as a kind of self-practice journal, but rather as a store of practical knowledge
of a variety of agents, useful for a variety of autonomous, humanoid robots.

The kinds of knowledge a robot needs for competent performance of its tasks are
varied. Usually, knowledge modelling in robotics and AI has focused on a symbolic
level, of actions treated as black boxes that relate to a larger plan by means of their
preconditions and effects. Actions are also very underspecified when described in
spoken commands. This abstract level of description however is insufficient; the
physical details of the actions matter. For example, the angle and speed with which
a pitcher is moved, and the amount of liquid in it, determines whether there will be
spillage. A robot needs to choose appropriate parameters for its actions, and infer
these parameters when they are left unspecified in a command.

Such inference requires the robotic agent to be equipped with common-sense and intu-
itive physics knowledge, as well as an abstract task and object model, and knowledge
of how to apply these models in a given situation. The NEEM model attempts to sup-
port each of these requirements. A brief list of some of the over-arching competency
questions follows.

• How are actions conceptualized? What is an action, how does it relate to other
concepts an agent might have about the world? What is the purpose of an action?

• What is the structure of an action? How do several actions make up another?
What objects participate in an action and with what roles?

NEEM Handbook 5

• How are qualitative and quantitative features of the world represented? What
is the parameter set of an action? What regions can values for these parameters
occupy? What is a good parameterization and how can one be found?

• How are the physical interactions that underlie an action described? What are the
involved forces, and how are they parameterized? What are relevant qualitative,
and thus more general, descriptors for interactions, such as balance, blockage,
compulsion? How are qualitative aspects of interaction grounded in quantitative
physical phenomena?

• How are objects conceptualized? What roles can an object play? What actions
can it take part in? What kinds of objects are necessary for an action?

• How is an action recorded and described? What is the relevant data to capture
how an action unfolded? What are the relevant pieces of contextual information
for describing an action that has actually occurred? What was the outcome of the
action, in particular, to what extent did it match the goal?

• How is a learning problem formalized? What is the optimization goal? What
assumptions were in effect when collecting the training data? What sort of
influence might biases have upon the learned model? What should be essential
features that a learned model should use? What would be sanity checks on the
learned model to verify it does not abuse spurious correlations?

1.3 Overview

NEEMs are the central data structures that link research results of various sub-
areas within the collaborative research center EASE . EASE is an interdisciplinary
institution headed by leading researchers in the fields robotics, human cognition,
formal logics, and linguistics. The overall goal is to make a robot more competent
in performing everyday activities. This is accomplished by equipping the robot
with models learned over experiences represented as NEEMs . The purpose of this
document is to provide detailed information about the EASE system for episodic
memories. That is how NEEMs are represented as knowledge bases linked to time-
series data, acquired through experimentation, observation or simulation, stored on
a centralized server, and maintained as a dataset for the research community. The
architecture is shown in Figure 1, and will be summarized in the remainder of this
section.

At the core of the EASE system for episodic memories is the NEEM data structure.
It is a heterogenous datastructure that contains data in different formats to repre-
sent different categories of information about everyday activities. Each NEEM is
made of three parts: background (Chapter 2), narrative (Chapter 3) and experience
(Chapter 4). The background represents physical activity context by characterizing
the environment, and agents that play a role during the activity. A single background

6 Beetz et al.

may be shared in mutiple NEEMs . The narrative is a representation of events that
happened, their characterization and contextualization. That is, for example, that
an event occurred, what roles objects played during the event, how the event was
carried out through motions and interactions, and what the reason of its occurrence
is. The narrative provides labels used to annotate the time-series data stored in the
experience of the NEEM . This is done by associating the event time intervals to slices
in the time-series database. The experience data is used to capture some aspects of
kinematics and dynamics of an activity, that is how objects moved, how they got into
contact with each other, and how forces act upon objects.

NEEMs are stored on a publicly accessible infrastructure that we have called the
NEEM-hub (Chapter 5). The NEEM-hub builds on top of common infrastructure used
in data science to continuously update models learned from NEEMs . Uploading a
NEEM requires to create a new data set on the NEEM-hub GitLab interface where
users can provide documentation, usage examples, additional links and references
for their NEEM data set. Once a user is satisfied with the state of the data set, it
may be published. This will make the data set accessible via the knowledge service
openEASE where users may search for data sets given some keywords, download the
data set, or investigate it in an interactive environment.

As EASE is an interdisciplinary effort, there are also different modalities under which
NEEMs can be acquired. We haved developed multiple acquisition infrastructures that
support researchers from different domains to acquire NEEMs (Chapter 6). This is,
first of all, an interface that integrates with a robot control system either in a simulated
or real-world scenario where the robot senses its surroundings, and executes specific
plans through motions of its body and interactions with its environment. A second
acquisition interface integrates with simulated virtual reality environments in which
humans perform everyday activities. In this case, the intentions are not certainly
known because even when told to do something specific, a human may do some
unrelated experimentation in the virtual reality. The state of the environment including
force characteristics can, however, fully be monitored.

2

NEEM-Background

D. BESSLER, M. POMARLAN, A. VYAS

The NEEM-background represents the (physical) context of NEEMs . More concretely,
the NEEM-background represents the environment where events took place, and the
agents that are involved. These are representations of physical objects, their parts,
properties, and relationships between them.

Each NEEM must have exactly one associated NEEM-background . This is important
as only the objects and their properties represented in the NEEM-background may be
involved in events that occur in NEEMs . Consider, for example, a robot fetching a
cup in a kitchen environment to prepare a coffee. The cup would be part of the NEEM-
background while the fetching event carried out by the robot would be represented in
the NEEM-narrative (Chapter 3).

The way how a task can be solved best depends on what is available in the environment.
The suitability of an object to be used to perform a certain task is often derived from the
class of objects it belongs to, e.g., a knife can be used for cutting. The NEEM model
defines a set of more general object classes such as agent and artifact (Section 2.1).
These are used to classify each object represented in the NEEM-background . The
usability of an object is, however, ultimately grounded in its properties, e.g., a dulled
knife may prove to be unusable to perform a cutting task. It is thus also relevant to
characterize object properties as they correlate with how an agent may solve its task.
Consequently, we treat types of object properties as classes organized in a taxonomy
(Section 2.2).

NEEMs may characterize different aspects of the environment depending on what
information is accessible when the NEEM is acquired. We organize different char-
acteristics in so called views (Section 2.3). Each view has its own set of types and
relationships to represent the environment from a specific viewpoint such as appear-
ance or kinematics.

8 Beetz et al.

NEEMs are heterogeneous representations that may include additional data files.
These representations are time series data that are annotated by the NEEM-narrative .
In addition, some widely used data formats for the representation of objects are sup-
ported (Section 2.4). Such data files may be stored within the NEEM-background ,
associated to objects it represents, and used to enrich knowledge about the environ-
ment.

2.1 Types of Objects

Objects and agents that appear in an environment are classified as physical objects.
Physical objects are exactly the objects you can point to, as they have a location in
space.

The most common physical objects in non-natural environments are artifacts. An
artifact is an item that has certain structure, often to serve a particular purpose such as
to use it in a certain way, or to enjoy looking at it in case of, e.g., an art piece. Artifacts
that were created with a purpose in mind are called designed artifacts. Most objects
in human-made environments belong to this category. Note that, e.g., a container is
not a designed artifact, as also objects that were not designed as such may serve as
containers. Consequently, the class designed container is used for the objects that
were designed to be used as a container. Other examples of designed artifacts are tools
and appliances designed for specific tasks or agents and the components designed to
fit together to form a larger whole.

Another category of objects are physical bodies. Most commonly one would use this
category for substances that appear in the environment such as a blob of dough, or
the coffee inside of a cup. However, it is more appropriate to classify the substance as
designed substance in case it was created with a purpose in mind, for e.g., in the case
for the dough that is made according to a recipe and supposed to be eaten after being
baked.

Agents that appear in a NEEM are classified as physical agents. The difference from
other types of objects is that the agents have intentions, execute actions, and attempt
to achieve goals, e.g., by following a plan and moving their body in a way to generate
interactions with the environment to cause intended effects. Each agent is composed
of functional parts organized in a skeletal structure. Interactions with the environment
are carried out through effectors such as arms, legs, or hands. Effectors that are used
for grasping are called prehensile effectors.

The last top-level category in our object taxonomy is physical place. Places are objects
with a specific location such as the surface of a table, or the campus of the University.
Each NEEM refers at least to the place where it was acquired, which is usually a room
in a building with objects that can be used to perform certain everyday tasks.

NEEM Handbook 9

2.2 Properties of Objects

Qualities are the properties of an object that are not part of it, but cannot exist without
it. This is, for example, the quality of having a shape – a quality inherited by all
physical objects. Another example is the quality of a floor having a certain surface
friction and thus being slippery or not. A robot navigating on such a floor could
use this knowledge to avoid, for example, spillage when moving on the floor with a
coffee-filled cup. The quality concept does not directly encode the value of the object
property, but only focuses on characteristics of the property itself. This is mainly
useful in cases where individual aspects of an entity are considered in the domain of
discourse.

Intent To represent the qualities of an
object.

Competency
Questions

What qualities does this object
have? What objects have this
quality?

Defined in DUL.owl

Object

Quality

hasQuality isQualityOf

Expression Meaning
has quality(o,q) q ∈A is a quality of o ∈A

Several sub-classes of Quality and corresponding sub-relations of has-quality are de-
fined in the NEEM model. Some of them will be described later in this chapter.

Each object property has one value at a time. The value is an element in a dimensional
space. Such a dimensional space is called Region in the NEEM model. A region
may have an infinite number of elements, or, in the other case, may enumerate all its
elements. The color of an object, for example, may have a value encoded as RGB
vector which is an element of the RGB colorspace (which is a region). Regions
may further be decomposed into sub-regions, for example, to represent the sub-
region of RGB colorspace with dominant red color. Note that the domain of the
relation has-region is not Quality but Entity. This is to allow assigning regions to
entities without requiring an explicit Quality individual as an intermediate. Instead,
the property connecting the Entity specifies what information the Region conveys
about the object.

As an example, a PhysicalObject would be linked via a hasMassAttribute to a Mas-
sAttribute, that is, to a Region individual containing information about the object’s
mass. It is the relation hasMassAttribute that specifies what information the Region
contains.

10 Beetz et al.

Intent To represent values of at-
tributes of things.

Competency
Questions

What is the value for the
attribute of that entity?
Which entities have a certain
value on that parameter/at-
tribute/feature?

Defined in DUL.owl

Entity

Region

XSD Type

hasRegion

hasRegionDataValue

Expression Meaning
has region(x,y) y is a region of x
has data value(x,y) y is a data value of x

2.3 Views on Objects

The NEEM-background may represent several different views on the same object
highlighting different characteristics that are fused in the NEEM-background to
form a more complete representation of the environment. Each view has its own
vocabulary to describe objects including view-specific types of objects, qualities, and
relations, and has a distinct set of competency questions that may be answered in
case a NEEM represents the view. A NEEM may not represent each supported view,
however, it is recommended to represent as many as possible.

2.3.1 Appearance

SOMA defines several concepts to represent qualities relating to an object’s appear-
ance. The list includes, but is not limited to, Color, Shape, and Size . A quality belongs
to an object, and can take values only from regions of an appropriate type.

The shape of an object can either be represented as primitive geometry (e.g., box or
cylinder), or as mesh. Primitive shapes are described by their geometric parameters,
such as height, width and length for a box, and radius and length for a cylinder. A
mesh shape, on the other hand, has a data property that is a URI of the file that
contains the mesh data.

Intent To represent the quality of hav-
ing a shape.

Competency
Questions

Does this objects have a
shape?

Defined in SOMA.owl

Physical Object

Shape

hasShape isShapeOf

NEEM Handbook 11

Expression Meaning
has shape(o) o ∈A has a shape
has shape(o,s) s ∈A is the shape of o ∈A

Intent To represent the region of
shapes.

Competency
Questions

What geometric parameters
has this shape? What is the
URL where a mesh file of this
shape can be retrieved?

Defined in SOMA.owl

Box Region Mesh Region

Cylinder
Region

Sphere
Region

xsd:double

xsd:double

xsd:string

xsd:double

hasRadius

hasURL
hasHeight
hasLength
hasWidth

hasLength
hasRadius

Expression Meaning
has bbox(o,d,w,h) d,w,h ∈R are the depth, width and height of the

bounding box of o ∈A
has shape data(o,sphere(r)) r ∈ R is the radius of the sphere shape of o ∈A

The color of an object is a quality that may take values from a ColorRegion. Color
regions may be qualitative, such as GreenColor or RedColor, which correspond to
sets of color values; color regions may also be specified as a single datapoint, i.e. a
string representing the color’s components in some color space.

Intent To represent the quality of hav-
ing a color.

Competency
Questions

Does this objects have a
color?

Defined in SOMA.owl

Physical Object

Color

hasColor isColorOf

Expression Meaning
has color(o) o ∈A has a color
has color(o,c) c ∈A is the color of o ∈A

12 Beetz et al.

Intent To represent the color of phys-
ical objects.

Competency
Questions

What is the color of this ob-
ject? Which objects have this
color?

Defined in SOMA.owl

Color Region

xsd:string

hasRGBValue

Expression Meaning
object color rgb(o,[r,g,b]) r,g,b ∈ R is the RGB color data of o ∈A

2.3.2 Structure

Parthood represents that objects are composed of smaller things. These things may be
physical objects themselves, and a component of their direct parent in the partonomy.
Parthood is transitive, that is, parts of parts are parts again, but componency is not.
So one would say that the arm is a component of the robot, and that the elbow is
component of the arm, but not that the elbow is a component of the robot – however
the elbow is a part of the robot due to the transitivity of the parthood relation.

Intent To represent proper parthood
of objects.

Competency
Questions

What is this object component
of? What are the components
of this object?

Defined in DUL.owl

Physical Object

Physical Object

hasComponent isComponentOf

Expression Meaning
has component(x,y) y ∈A is a component of x ∈A

However, another parthood type is needed for objects such as holes, bumps, bound-
aries, or spots of color that are physical parts but not a proper component of their
parent in the partonomy. These are features of the object. Features are usually local-
ized in the object reference frame, and may carry additional properties describing, for
example, the size of the hole, or the color of the spot.

Intent To represent features of ob-
jects.

Competency
Questions

What are the features of this
object? What are the objects
with this feature?

Defined in SOMA.owl

Physical Object

Feature

hasFeature isFeatureOf

NEEM Handbook 13

Expression Meaning
has feature(x,y) y ∈A is a feature of x ∈A

2.3.3 Kinematics

Kinematics, also often referred to as geometry of motion, describes how objects may
move without considering the influence of forces. The kinematic state of an object
is given by its pose over time, stored in the NEEM-experience as time-series data,
and accessed via a dedicated predicate is at. Poses are expressed within a frame of
reference. There is one reference frame at the origin of each object, and possibly more
at the various locations of interest. In addition, there is one dedicated root reference
frame, the origin of the map. Each other frame must be, possibly indirect, connected
to the map origin frame. The pose itself is given as 6D pose including the objects’
orientation as quaternion vector.

Intent To represent that objects are
localized in a map.

Competency
Questions

Is this object localized? In
which map is this object local-
ized? What are the objects lo-
calized in this map?

Defined in SOMA.owl

Physical Object

Localization

hasLocalization isLocalizationOf

Expression Meaning
is localized(o) o ∈A is localized wrt. some map origin
is localized(o,m) o ∈A is localized wrt. the origin of m ∈A

Intent To represent kinematic trees of
objects connected via joints.

Competency
Questions

Are these objects kinemati-
cally coupled? Which objects
are linked through this joint?

Defined in SOMA.owl

Localization

6D Pose

double[]xsd:string

hasSpaceRegion isSpaceRegionOf

hasReferenceFrame hasTranslationVector
hasOrientationVector

Expression Meaning
is at(o,[x,p,q]) during ti p ∈ R3 is the position, and q ∈ R4 the orienta-

tion of o ∈A within the reference frame x ∈F
during time interval ti ∈ R2

≥0

14 Beetz et al.

However, objects often can not move freely but are constrained in their movement
with respect to some reference object. This is, for example, the case for walls without
doors preventing movement from one room to another, or for two objects that are
attached to each other via a joint and thus restricting movement relative to each
other (kinematic coupling). Kinematically coupled objects are often part of a bigger
hierarchical structure, and one of the linked objects, the parent link of the joint, is
the one closer to the root of the structure then followed by the child link of the
joint.

Intent To represent kinematic trees of
objects connected via joints.

Competency
Questions

Are these objects kinemati-
cally coupled? Which objects
are linked through this joint?

Defined in SOMA.owl

Physical Object

Joint

Physical Object

isParentLinkOf hasParentLink

hasChildLink isChildLinkOf

Expression Meaning
has child link(j,o) o ∈A is the child link of joint j ∈A
has parent link(j,o) o ∈A is the parent link of joint j ∈A

The pattern above is used to represent kinematical structures, however these repre-
sentations must also be linked to the various typed objects that are represented in the
NEEM-background . Such objects may be referred to directly in kinematical struc-
tures in case of not being composed of movable parts. In the case of having movable
parts, the object corresponds to chains of links connected via joints in the kinematics
representation. This is, for example, that the kinematical chain from shoulder to wrist
forms an arm component. Each kinematic object component has exactly one root link,
and may have many end links such as a hand component having its root in the wrist,
and ending at each fingertip.

Intent To represent the kinematic
chain of object components.

Competency
Questions

What is the kinematic root of
this object? What are the end
links of this object?

Defined in SOMA.owl

Physical Object

Physical Object

Physical Object

isRootLinkOf hasRootLink

hasEndLink isEndLinkOf

Expression Meaning
has base link(o1,o2) o2 ∈A is the first link of o1 ∈A
has end link(o1,o2) o2 ∈A is one of the last links of o1 ∈A

NEEM Handbook 15

The position of a joint determines the position of the child link relative to the parent.
Depending on whether the joint is either hinged (rotation around an axis) or prismatic
(sliding along an axis), the position is measured in radians or meter respectively.
When the position changes over time, velocity (measured in rad/s or m/s) and effort
applied in the joint (measured in Nm or N) can be measured. Joint states are recorded
as time-series data and stored in the NEEM-experience . However, the NEEM model
defines a set of data properties used to access joint state data.

Intent To represent the position of a
joint.

Competency
Questions

What is the state of this joint?
What is its position and veloc-
ity? How much effort is ap-
plied?

Defined in SOMA.owl

Joint

Joint State

xsd:double

hasJointState isJointStateOf

hasJointPosition
hasJointVelocity
hasJointEffort

Expression Meaning
has joint position(j,x) x ∈ R is the position of joint j ∈A given in m

(prismatic joints) or rad (hinged joints)
has joint velocity(j,v) v ∈ R is the velocity of joint j ∈A given in m

s
(prismatic joints) or rad

s (hinged joints)
has joint effort(j,x) x ∈ R is the applied force of a prismatic, or the

torque of a hinged joint j ∈ A given in N or
N ·m respectively.

The movement of a joint may be restricted by physical limits. This is the case for
revolute and prismatic joints. The joint position is bounded between a minimum and
maximum value, expressed as radians for revolute joints, and meters for prismatic
joints. In addition, maximum values for the velocity and effort of a joint may be
provided.

Intent To represent the hard limits of
a joint.

Competency
Questions

How far can this joint move
into some direction?

Defined in SOMA.owl

Joint

Joint Limit

xsd:double

hasJointLimit isJointLimitOf

hasJointPositionMin
hasJointPositionMax
hasJointVelocityLimit
hasJointEffortLimit

16 Beetz et al.

Expression Meaning
has joint position limit(j,x) x ∈ R2 is the minimum and maximum position

of joint j ∈ A given in m (prismatic joints) or
rad (hinged joints)

has joint velocity limit(j,vmax) vmax ∈ R is the maximum velocity of joint j ∈
A given in m

s (prismatic joints) or rad
s (hinged

joints)
has joint effort limit(j,xmax) xmax ∈ R is the maximum force of a prismatic,

or the maximum torque of a hinged joint j ∈A
given in N or N ·m respectively.

2.3.4 Dynamics

The dynamics view in the NEEM-background is used to characterize how objects
move under the influence of force. The NEEM model only considers solid objects
with constant mass and dynamics governed by Newton’s laws.

Intent To represent the quantity of
matter which a body contains.

Competency
Questions

What is the mass of this ob-
ject?

Defined in SOMA.owl

Physical Object

Mass Attribute

xsd:double

hasMassAttribute isMassAttributeOf

hasMassValue

Expression Meaning
has mass(o,v) v ∈ R>0 is the mass of o ∈A in kilograms

At each point in time, the sum of forces influencing an object determines how its
movement will change. The accumulated force may be stored as time-series data in the
NEEM-background , and accessed via an attribute defined in the NEEM model.

Intent To represent the quantity of
force influencing a solid ob-
ject.

Competency
Questions

What is the force acting upon
this object?

Defined in SOMA.owl

Physical Object

Net Force

xsd:double

hasNetForce isNetForceOf

hasForceValuet

NEEM Handbook 17

Expression Meaning
has net force(o,f) during ti f∈ R3 is the accumulated force, measured in

Newton, that acts upon o ∈ A during time in-
terval ti ∈ R2

≥0

2.3.5 Naive physics

This view on objects is comprised of qualitative descriptions of the interactions of
these objects, with a focus on how the objects could be arranged so as to constrain
each other’s behavior. The prototypical examples of such interactions are support
and containment, but many other interactions are possible. Note, formalizing actual
manifestations of such interactions as they occur in an episode will be done in
chapter 3. In this chapter, we focus instead on ontological modelling about what kinds
of interactions an object could take part in.

This is achieved by the concept of Disposition, which is a quality that, by virtue of
being possessed by an object, enables that object to participate in certain roles in
certain relations or events. E.g., Deposition and Containment are the dispositions
necessary to enable an object to act as a support or container for another.

Intent To represent what kinds of in-
teractions an object can partic-
ipate in.

Competency
Questions

What can this object be used
for? Can this object interact
with others in a particular
way?

Defined in SOMA.owl

Physical Object

Disposition

hasDisposition isDispositionOf

Expression Meaning
has disposition(x,y) y ∈A is a disposition of x ∈A

By and large, researchers making use of the SOMA ontology to create NEEM back-
grounds and NEEMs can rely on the ontology to already provide a rich store of object
knowledge, including dispositions. As such, it should usually be sufficient for the
researchers adding knowledge about a new type of object, to specify the object classes
defined in SOMA, to which the new object type is a subclass of. However, in case
new dispositions need to be added for a new object type in the NEEM background,
the above pattern illustrates how.

18 Beetz et al.

2.4 Data Formats

Representations in the NEEM-background may be enriched through additional data
files. Data files are stored with the NEEM-background and loaded by the EASE knowl-
edge base when a NEEM is activated. They may encode information that can be
directly represented in the NEEM , however, it is not necessary in such a case to
duplicate the information. A data file may be loaded at runtime, and used by the
knowledge base in combination with other representations to answer questions about
an activity.

2.4.1 URDF

The Unified Robot Description Format (URDF) is widely used for the representation
of kinematics in robotics. That is how objects are organized in a skeletal structure
of links and joints, and how links may move relative to each other in case of being
connected via a flexible joint. URDF was designed to represent robot kinematics. It is,
however, also often used for other types of objects with movable parts, for example to
represent how a door is attached to a shelve via a joint, and what limits the joint has,
but can also be used to represent completely static environments (via fixed joints).
URDF further allows to represent a set of properties for links and joints, such as what
the mass of a link is, or what the hard and soft limits of a joint are.

URDF organizes objects and their parts in a common coordinate system, and rep-
resents an initial configuration of all links and joints. The origin of this coordinate
system is often called world or map frame. Each object has an associated frame in this
coordinate system with a position relative to the parent frame in the skeletal structure.
Frame names are further used to identify entities in the knowledge base, and logged
position data that corresponds to objects described in the URDF file.

From the point of view of URDF, the world is only made of links and joints. Joints
are further classified based on how they operate, and have different sets of parameters
quantifying their kinematics depending on their type. It is, however, not possible
to represent that links belong to a certain category, or that a chain of links forms a
component of some type. However, we can use the information encoded in URDF
files to enrich NEEM-background representations, and on the other hand, use the
NEEM-background to provide classifications for links in URDF files.

Links in URDF files may have multiple associated shapes. Two different shape types
are distinguished: collision and visualization shapes. Each link has usually one shape
of each kind. Shapes are either represented as geometrical primitives such as spheres
or boxes, or refer to an external mesh file in which case this mesh file needs to be
stored as an additional data source in the NEEM-background (next Section).

NEEM Handbook 19

2.4.2 DAE

The preferred format for meshes is Collada (DAE). The reason primarily being that it
is widely supported by modeling tools and rendering engines. If possible, the mesh
should be accompanied by high-resolution textures in PNG or JPG format. The more
detailed a mesh, the more immersive the experience of humans interacting with it
in VR and better the perception models that can be trained by images generated
by placing the object in a virtual scene. Of course, this must be balanced with
the computational demands imposed by mesh rendering and collision checking.
When storing mesh and texture data for objects, researchers who produce NEEM
background should make sure the meshes match the demands and resources of their
applications.

3

NEEM-Narrative

D. BESSLER, M. POMARLAN, A. VYAS, S. JONGEBLOED

The narrative part of NEEMs represents a “story” of what has happened. The story is
more detailed then it would be when told from one human to another as it includes
details about movements and interactions that would usually not be spelled out in
a human conversation. The reason to include this type of information is that it is
extremely difficult to generalize robotic behaviour, and in particular how the robot
needs to move its body to accomplish its goal with varying context such as different
environemnts. The vision is that a library of contextualized motions and interactions
will help to uncover models underlying everyday activities. With contextualized we
mean that each motion and interaction is associated to the context of its occurrence.
That is the environment where it occurred, objects that were involved, the goals and
plans of agents, their behaviour etc.

The story represented in the NEEM-narrative provides context for the NEEM-
experience acquired during an activity. This is, first of all, that labels are assigned to
the time intervals where something relevant has happened such as the execution of
a task, the interaction between objects, or the occurrence of a motion. Labels corre-
spond to classes that are organized in a taxonomy (Section ??). This allows to learn
models at different levels of abstraction, e.g., for more general or specific variants
of a task. The NEEM-narrative further represents relationships between instances of
these classes, such as that an object plays a role during an event, or that a movement
has happened as part of executing an action (Section 3.3).

3.1 Types of Events

There are several ways of classifying events including based on agentivity (e.g.
intentional, natural), or on typical participants (e.g. human, physical, abstract, food).

22 Beetz et al.

The NEEM model does not take any of these directions. The reason is that events
are related to observable situations, and that they can be viewed in different ways
at the same time. For example, when seeing someone strolling while some piece of
paper appears to slip out of a pocket one may view this event as an accident while in
reality it was an intentional action to dispose trash on the street. The reason being that
intentions of agents can usually not be observed directly, and hence an interpretation
is required. Another aspect is that events may contribute to several goals, and, in
such a case, may not be associated to a single category. This is, for example, the case
when fetching a glas of wine from a fridge in order to first pour some wine into the
Bolognese sauce, and second to drink the remaining wine from the glass. In this case
the fetching event contributes to multiple goals and thus would belong to different
classes in an action taxonomy organized based on agentivity.

The NEEM model defines a very shallow event taxonomy with rough distinctions that
are not dependent on how an event is interpreted, executed or seen. These categories
are: action, process, and state. Actions are exactly the events that are performed
intentionally by an agent executing a task by following a plan or workflow. A process,
on the other hand, is an event that causes state changes without the necessity of an
agent driving or causing the process. Movement being one example, as it does not
strictly depend on an agent executing a motion. For example, in case of the earth
rotating around the sun, or some letter in a bottle being transported through the
ocean. Finally, a state is defined as an event where an object has a dedicated stable
configuration which is usually represented as having a certain property value over a
fixed time interval.

However, it is possible to represent how an event is interpreted, executed or seen using
a taxonomy of event Concepts which is included in the NEEM model. Concepts are
used to classify events in some context. On the highest level, the concept taxonomy
distinguishes between concepts used to classify the different event categories action,
process and state.

Tasks

A task is defined as a concept that classifies actions based on what goals an agent
intents to achieve when executing an action. Goals may be achieved in different
ways depending on, for example, what is available in the environment, or what skills
an agent has. Tasks do not imply a particular way of doing something, however,
plans can be used to decompose a task into several sub-tasks and thus to represent a
particular way how the task can be organized. For example, beer brewing is a task
with a dedicated goal which can be accomplished through different workflows which
are slightly different at each brewery. Tasks are further classified into three main
categories: physical task, mental task and communication task. We are primarily
interested in physical tasks. These are the tasks that require a physical agent to
execute them. That is an agent with its own body and the ability to move meaningfully
to achieve a designated goal by interacting in some way with the physical world.

NEEM Handbook 23

This category includes tasks such as actuating, constructing, modifying, placing and
navigating. A task that requires to execute an action through which an agent has
to manipulate representations stored in its own cognition is seen as a mental task.
Dreaming, imagining, prospecting, reasoning, and retrospecting are examples of this
category. Finally, a communication task is seen as a task in which two or more agents
exchange information. The scope of interest is to identify which agents communicate,
and what kind of information is exchanged.

Process Types

The NEEM model also defines concepts that classify processes. One aspect is that of
what a process does to objects. This is represented through the concepts alteration,
destruction and creation. Note that this may also be view-dependent, one person
may see only the destructive aspects of a process, but another person may see the
creation of something new too. Another aspect we are interested in are the force
characteristics of processes. That is how objects interact with each other with a
reference to force. Each process may be labeled as alterative or preservative, meaning
that there was either a tendency to set an object into motion, or to keep it still. Finally,
in the NEEM model, motions are also seen as concepts that classify processes. The
reason being, as explained before, that motions such as a message in a bottle moving
in the ocean are not executed by an agent. However, it is ok to say that an event is
an occurrence of a task and a motion at the same time as actions and processes are
not disjoint. The motion taxonomy distinguishes between directed and undirected
motions on the highest level. A directed motion is carried out towards a destination
and following a directed path, while there is no destination for an undirected motion.
An Oscillation being an example of an undirected motion. However, more relevant
for goal-directed behaviour are directed motions such as locomotion where an agent
navigates to a dedicated target, and prehensile motion which is directed towards
grasping an object, or releasing the grasp again. The NEEM model defines another
concept fluid flow that can be used to label a process where some fluid moves or has
been moved from one location to another following the laws of fluid dynamics.

State Types

Finally, there are concepts defined in the NEEM model that can be used to classify
states. We are in particular interested in the states where objects are in contact with
each other. These are classified as contact states. Our interest in these states arises
from the fact that they capture the interaction with the environment caused by the
manipulation of objects where objects get into contact with the agent, or other objects
in the environment. Other examples of state concepts used for the classification of
state events are being contained within, and being supported or blocked by some
other object.

24 Beetz et al.

3.2 Roles of Objects

Roles are concepts used to describe how an object participates in an event or a relation.
An object can play different roles throughout its lifetime. For example, a knife may
play the PatientRole of a grasping action, i.e. the object mainly affected by the
action, and play an InstrumentRole in a cutting action. Other roles include AgentRole,
CausalProcessRole, etc. Further role sub-categories will be defined under appendix
section.

3.3 Views on Events

Events are characterized in the NEEM-narrative through relationships and attributes.
We encapsulate certain characteristics in so called event views. Each view focusses on
specific characteristics such as when the event occurred, or what roles objects have
played in order to cover a set of competency questions that can be answered about
an activitiy in case the corresponding view is represented. In the following, we will
present the different views on events considered in the NEEM-narrative .

3.3.1 Occurrence

The NEEM model defines Events as things that unfold over time which is the main
difference to Objects which are things that are wholly present at each time instant.
This definition of events implies that an event is not instantaneous, but that it has an
associated time interval during which it occurred.

Intent To represent the temporal ex-
tension of events.

Competency
Questions

What is the time interval asso-
ciated to this event?

Defined in DUL.owl

Event

Time Interval

hasTimeInterval isTimeIntervalOf

Expression Meaning
occurs(x) x is an occurence
is time interval(x) x is a time interval
has time interval(y,x) x is the time interval of event y

NEEM Handbook 25

Intent To quantify when something
has happened.

Competency
Questions

When did it happen?

Defined in SOMA.owl

Time Interval

xsd:double

hasIntervalBegin
hasIntervalEnd

Expression Meaning
occurs(x) during [y,z] x occurs between the occurrences of y and z
occurs(x) since y x and y begin at the same time
occurs(x) until y x and y end at the same time

3.3.2 Participation

Events always involve some objects that play a certain role during the event. The role
of being the patient of some event being an example. This is that the event is directed
towards the object. It is not always directly observable what the role of an object
might be, however, it is less problematic to just state that the object has participated
in some event without naming a role.

Intent To represent participation of
an object in an event.

Competency
Questions

Which objects do participate
in this event? In which events
does this object participate in?

Defined in DUL.owl

Event

Object

hasParticipant isParticipantIn

Expression Meaning
has participant(x,y) y is involved in event x

Agents are defined as agentive objects, either physical (e.g. a robot, a human or
a whale) or social (e.g. a corporation, an institution or a community), Actions are
defined as events with at least one agent that is participating in it, and that is executing
a task. An example would be a robot that is grasping an object. In that case the robot
is the agent and grasping would be the a task executed in an action. Actions can be
executed by multiple agents.

26 Beetz et al.

Intent To represent that an agent has
executed an action.

Competency
Questions

Which agent did execute this
action? Which actions are exe-
cuted by this agent?

Defined in SOMA.owl

Action

Agent

isExecutedBy executesAction

Expression Meaning
is executed by(x,y) y is executed by x

3.3.3 Composition

Because an Event often has relevant internal structure, it is necessary to represent
relations between it and the other events that make up its composition. In general, the
parts of an Event are themselves Events. For example, the parts of an Action may be
Actions or Processes. To help identify when an Event is to be understood as a part
of some larger, we will use the word “phase”: an Event which is a part of another.
Note that, as we discussed above, any Event may be part of another so the word
“phase”, while useful for our presentation here, does not correspond to a concept in
the ontology.

To represent the parthood relation between Events, we define the hasPhase object
property. This is a transitive and asymmetric property; no Event may be a part of
itself.

Intent To represent how an event is
composed of phases.

Competency
Questions

What are the phases of this ac-
tion? Is this a phase of some
action?

Defined in SOMA.owl

Event

hasPhase

Expression Meaning
has phase(x,y) y is a phase of x

3.3.4 Transformation

Objects typically undergo changes by taking part in actions or processes. Such changes
typically take one of two forms: either some property of an object changes value,
or the object itself modifies its ontological characterization. As an example, a wad

NEEM Handbook 27

of dough being transported from the table to the inside of an oven has changed its
position, but is still, at this point, a wad of dough. Left in a hot oven for enough time
however, the wad of dough becomes bread.

The variation with time of object qualities has been described in section ??. The
object transformation pattern, described here, handles the changes of an object’s
ontological classification through time. An immediate problem is that ontological
characterizations are necessarily discrete – there is a finite number of classes an
object can belong to – while change in the physical world is continuous. In the
example above, the wad of dough ceases to be dough after a few moments in the oven,
because its chemical composition is changing away from the composition of dough.
Nonetheless, it is not bread yet.

For practical purposes however, human beings often do not care about the exact classi-
fication of an object undergoing ontological change; only the endpoints are important.
Also, there is a tendency to loosely apply ontological classification to the changing
object, as if it were on either side of the transformation. The cooking wad of dough
could be referred to as dough, or it could be referred to as bread. It is both, and neither.
While sufficient for causal discourse, such carelessness would not work in a formal
system. Hence, the approach in SOMA is to define a class of objects called Transient,
and it is to this class that objects undergoing ontological classification change belong
to. A Transient transitionsFrom some object with a specific classification (e.g. Dough)
and transitionsTo another object with a specific classification (e.g. Bread). These two
relations can be combined into the transitionsBack relation, to cover situations where
an object changes in essential ways during an event, but returns to being itself after
the event completes, such as a catalyst in a chemical reaction.

Intent Ontological classification
for objects undergoing type
changes.

Competency
Questions

What sort of object is this?
What objects “went” into the
making of another? What is
the outcome of some process
of change acting on an object?
Does an object preserve or re-
store its identity after change?

Defined in SOMA.owl

Transient

Object

Object

transitionsFrom

transitionsTo

28 Beetz et al.

Expression Meaning
transitionsFrom(’A’,’B’) By entering some process of change, object ’B’

becomes Transient object ’A’.
transitionsTo(’A’,’B’) By completing some process of change, transient

’A’ becomes object ’B’.
transitionsBack(’A’,’B’) Object ’B’ entered some process of change dur-

ing which its ontological classification is unclear
and it is replaced by Transient ’A’, but after the
process completes object ’B’ is restored.

3.3.5 Conceptualization

The classification of entities is done from multiple viewpoints. The most essential
one is what the entitiy really is. This is reflected in the taxonomy. However, entities
may further be classified according to social aspects such as intention, purpose, etc.
This type of classification is based on the conceptualization of entities. In particular,
conceptualizations of objects and events are used to classify them in the scope of
some activity.

An object that participates in an event usually plays a certain role during the event.
Some objects are designed to be used in certain ways, thus playing certain roles in
specific tasks. This is, for example, a box which is designed to be used as a container
to store items. However, roles may also be taken by objects that are not designed to be
used as such. The box could, for example, also be used as a door stopper, but surely it
would be inappropriate to classify it as such taxonomically. Instead, roles are defined
as concepts that are used to classify the objects that particpate in an event from a
conceptual viewpoint.

Intent To represents objects and the
roles they play.

Competency
Questions

What role does this object
play? Which objects do play
that role?

Defined in DUL.owl

Object

Role

hasRolet isRoleOft

Expression Meaning
has role(x,y) y is a role of x
has role(x,y) during z y is a role of x during the occurrence of z

The conceptualization of an event is about how it should be interpreted, executed,
expected, seen, etc. One aspect is that a single event may contribute to multiple goals,
such as when an ingredient is fetched that is partly used in a step of a cooking recipe,

NEEM Handbook 29

and partly eaten raw to satisfy hunger. In such a case, the taxonomical category of
the event would be unclear in case it should describe the goal to which the event
contributes. Another aspect is that intentions of agents may not always be known
such that the classification of events based on their goals is difficult, and different
viewpoints on the same event may exist. Hence, when referring to goals, intentions,
etc. we rather employ conceptual classification. This allows us to represent several
different classifications of the same event in one or more situational contexts, for
example an interpretations of the same event from different viewpoints.

Intent To represent how events
should be interpreted, ex-
ecuted, expected, seen,
etc.

Competency
Questions

What are the events that are
classified by this concept?
What are the concepts that
classify this event?

Defined in SOMA.owl

Event

Event Type

isOccurrenceOf isOccurringIn

Expression Meaning
is occurring in(x,y) y is an occurrence that is classified by x
is executed in(x,y) y is an action that executes the task x

3.3.6 Contextualization

An episode is seen as a relational context created by an observer that creates a view
on a set of entities such as actions that were performed, and objects that played a role.
We say that an episode is a setting for each entity that is relevant for the scope of the
episode. As an example, consider the statement ”this morning the robot made a mess
on the floor while preparing coffee”, where the preparation of coffee in the morning
is the setting for the robot, the floor, and the actions that were performed. Several
specializations of the general is setting for relation exist that can be used to distinguish
between entities based on their type – these are, among others, includesObject and
includesAgent. However, assuming hierachical organization of objects (i.e. all objects
are part of some map), and events (i.e. an event is composed into sub-events) only
those entities at the root of the composition (e.g. the map) are required to be included
explicitely in the episode.

30 Beetz et al.

Intent To represent that entites are in-
cluded in a situation.

Competency
Questions

What are the entities that are
relevant for this situation?
What are the situations where
this entity is relevant?

Defined in DUL.owl

Situation

Entity

isSettingFor hasSetting

Expression Meaning
is setting for(x,y) x is a setting for y

Episodes refer to concrete occurences with actual objects that are involved, and
actual events that occur. The conceptualization of an episode is an abstraction that
refers to concepts instead that are used to classify entities that are included in the
episode. Such conceptualizations are called descriptions. We say that an episode
satisfies a description in case the view represented by the episode is consistent with
the conceptualization given by the description. Diagnosis being one example of a
description of an episode. Stating that the performance of the robot was amateurish
when it made a mess on the floor while preparing coffee is one example for describing
an epsiode. Another type of descriptions are plans that are used to conceptualize the
structure of an activity.

Intent To represent a conceptualiza-
tion of a situation.

Competency
Questions

How can this situation be con-
ceptualized? What are the sit-
uations that are consitent with
this conceptualization?

Defined in DUL.owl

Situation

Description

satisfies isSatisfiedBy

Expression Meaning
satisfies(x,y) x is consistent with y

4

NEEM-Experience

D. BESSLER, S. KORALEWSKI

NEEM-experience captures low-level information about experienced activities repre-
sented as time series data streams. This data has often no or only unfeasible lossless
representation as facts in a knowledge base. To make this data knowledgable, proce-
dural hooks are defined in the ontology to compute symbols from the experience data,
and to embed these symbols in logic-based reasoning.

The data is stored in a NoSQL database using JSON documents. Each individual type
of data is stored in a separate collection named according to the type of data stored in
the collection. When imported, the knowledge system stores the data in a MongoDB 3

server, for which the knowledge system implements a client for querying the data dur-
ing question answering. The query cursor concept employed in MongoDB integrates
nicely with backtracking based search employed in the knowledge system. It further
scales well to large amount of data and can be distributed amongst clusters through
built-in automatic sharding.

The data in NEEM-experiences is represented as time series and indexed in time order.
The different experience data types need to define a dedicated time key for computing
the search index.

The experience data in NEEMs has individual characteristics regarding the format,
compressed representation, and what symbols the knowledge system can abstract
from the data. In this chapter, we describe these aspects for the experience data types
covered in NEEM version 1.0 .

3https://www.mongodb.com/

32 Beetz et al.

4.1 Kinematics

4.1.1 Pose data

A robotic system typically has many mobile components arranged in a kinematic
chain. Each component in a kinematic chain has an associated named coordinate
frame such as world frame, base frame, gripper frame, head frame, etc. Coordinate
systems are always 3D, with x forward, y left, and z up, which follows the right
handed coordinate system. 6 DOF relative poses are assigned to the different frames.
These are usually updated with about 10 Hz during movements, and expressed relative
to the parent in the kinematic chain to avoid updates when only the parent frame
moves. The transformation tree is rooted in the dedicated world frame node (also
often called map frame).

The data is used by the EASE knowledge system to answer questions such as:

• Where was the head frame relative to the world frame, 5 seconds ago?

• What is the pose of the object in the gripper relative to the base?

• What is the pose of the base frame in the map frame?

Pose data is saved in MongoDB collections named “tf”, the format is described
below.

Format

The pose data structure has fields for encoding the translation and rotation of a coor-
dinate frame. The parent frame and time stamp of pose estimation are stored in the
header field of the data structure. The transform coordinate frame is assigned to the
child frame id field.

Note that static frames may be recorded at lower frequency – about every two seconds.
This usually reduces the data size significantly. At the moment, no other motion data
compression, such as motion JPEG, is supported.

Field Type Description

tf dict –
header dict –
seq uint32 consecutively increasing ID
stamp time time stamp of this transform
frame id string parent coordinate frame of this trans-

form
child frame id string coordinate frame of this transform
transform dict –
translation dict position of child frame with respect to

parent frame in meters
x float64 x axis translation
y float64 y axis translation
z float64 z axis translation

rotation dict –
x float64 x component of quaternion
y float64 y component of quaternion
z float64 z component of quaternion
w float64 w component of quaternion

1 {
2 "header": {
3 "seq": 0,
4 "stamp": {
5 "$date": "2018-06-22T09:07:54.072Z"
6 },
7 "frame_id": "map"
8 },
9 "child_frame_id": "spoon",

10 "transform": {
11 "translation": {
12 "x": -0.05888763448188089,
13 "y": -0.23866299023536164,
14 "z": 0.13978717740253815
15 },
16 "rotation": {
17 "x": 0.03631169636551407,
18 "y": 0.974464008041022,
19 "z": 0.1092500799183137,
20 "w": 0.1927842778276488
21 }
22 }
23 }

Fig. 2. The pose data structure in the EASE system.

5

NEEM-Hub

S. KORALEWSKI, S. JONGEBLOED

Our CRC aims to acquire a huge amount of data, make the data accessible to the
research community, allow to analyze the data, create machine learning models
from the data and support version control for the data and models. With our NEEM-
hub concept we are covering all those requirements with one system.

To implement the version control of large data sets and machine learning models,
we are using DVC4. We use Hadoop5 and its file system HDFS to store the data and
models. Hadoop is a cluster system which creates automatically replicas of the data
once it is uploaded and allows parallel processing of data to speed up transforming or
querying the data.

On a high level perspective we want to realize two pipelines with our NEEM-hub as
depict in Figure 3. The first pipeline can be seen as the acquisition and analytic pipeline.
The first step in the pipline is storing raw data, such as videos, text, images and
electrocardiogram (ECG) data. In the next step, so called neemifier are transforming
this raw data into NEEMs which are utilizing the semantically representation provided
by SOMA . Since we are using Hadoop, multiple instances of the same neemifier can
neemify the raw data in parallel. There is also the possibility to upload NEEMs directly
to the NEEM-hub , so the neemifing step can be skipped. The stored NEEMs can
be accessed by openEASE . openEASE allows the inspection and visualization of
each individual NEEM . A direct download of the NEEMs to a local system is also
supported.

The second pipeline should be used as a pipeline for learning from the acquired data.
NEEMs are so rich full on information that one NEEM can be used for multiple
learning problems. In addition, NEEMs allow to generate models with different levels

4https://dvc.org/
5https://hadoop.apache.org/

https://dvc.org/
https://hadoop.apache.org/

36 Beetz et al.

of abstraction. One can learn general models e.g. the likely location of perishable
items or/and specialized models e.g. how an agent should grasp my favorite mug in
my kitchen. The procedure to generate the models is that transformers are used to
extract the required features from the NEEMs and store them in a data representation,
e.g. CSV, required for the machine learning model. The learners, which create the
models, store the data in the model library. This model library can be used afterwards
by an agent to perform reasoning.

In some scenarios those two pipelines can be combined to create a closed-loop. A pos-
sible scenario can be a robot acquiring NEEMs , uploading them to the NEEM-hub and
download afterwards the new models to improve itself for the next experiment.

RawRawRaw
neemifying

provides
features

Data Acquisition

Neemifier
Neemifier

Neemifier

stores

RawRawNEEMs

Acquisition

Neemifier
Neemifier

Learner
Neemifier

Neemifier
Transformer

RawRawTransformed
Data

RawRawModel

Learning

Fig. 3. The NEEM-Hub Architecture

Currently, we are only supporting data upload and hosting, like raw data, NEEMs and
transformed data. In future, we will provide the feature to share your neemifier and
transformers with the community and create your own pipelines directly on the
NEEM-hub . In the rest of this section we will describe how you can upload the data
to the NEEM-hub .

5.1 Prerequisite

1. Due to security reasons our Hadoop cluster can be only accessed via the univer-
sity’s intranet right now.

2. To be able to publish your data, you are required to have a git account on our
GitLab system https://neemgit.informatik.uni-bremen.de

3. To support version control with our NEEMs we have to install DVC https://
dvc.org/, if possible use a precompiled package https://github.com/
iterative/dvc.org/blob/master.

4. Get familiar with DVC https://dvc.org/doc/start.

https://neemgit.informatik.uni-bremen.de
https://dvc.org/
https://dvc.org/
https://github.com/iterative/dvc.org/blob/master
https://github.com/iterative/dvc.org/blob/master
https://dvc.org/doc/start

NEEM Handbook 37

5. Install Hadoop or a client which can interact with our HDFS filesystem. To install
Hadoop on Ubuntu 18.04 you can follow these steps:

a) Install Java 8 if it is not already installed:

1 add-apt-repository ppa:webupd8team/java
2 apt update
3 apt install -y oracle-java8-set-default

Listing 5.1. Install Java

b) Download the Hadoop Binaries, untar the archive and move it to /usr/local

1 wget http://apache.claz.org/hadoop/common/hadoop-3.3.1/
hadoop-3.3.1.tar.gz

2 tar -xzvf hadoop-3.3.1.tar.gz
3 mv hadoop-3.3.1 /usr/local/hadoop

Listing 5.2. Install Hadoop Binaries

c) Set the following environment variables so that DVC can find the Hadoop
binaries:

1 export PATH="/usr/local/hadoop/lib/native:/usr/local/
hadoop/bin:/usr/local/hadoop/sbin:$PATH"

2 export ARROW_LIBHDFS_DIR="/usr/local/hadoop/lib/native"
3 export CLASSPATH=‘/usr/local/hadoop/bin/hdfs classpath

--glob‘

Listing 5.3. Export environment variables for Hadoop

5.2 Downloading

To test if you setup your system successful, you can try to download NEEMs :

1. You can explore a DVC repository using dvc list:

1 dvc list https://neemgit.informatik.uni-bremen.de/neems/
ease-2020-pr2-setting-up-table

Listing 5.4. Exploring a DVC repository using dvc list

2. To download specific episodes you can download them using dvc get:

1 dvc get https://neemgit.informatik.uni-bremen.de/neems/ease
-2020-pr2-setting-up-table episodes/1599727087.4392.zip

Listing 5.5. Downloading a episode using dvc get

38 Beetz et al.

3. To download a complete NEEM you can download it by first cloning the reposi-
tory using git and then using dvc pull:

1 git clone https://neemgit.informatik.uni-bremen.de/neems/
ease-2020-pr2-setting-up-table

2 cd ease-2020-pr2-setting-up-table
3 dvc pull

Listing 5.6. Downloading a NEEM using dvc pull

5.3 Publishing

To organized the raw and transformed data and the NEEMs , we created 3 groups on
GitLab. Each group corresponds to the specific data set type. The general procedure
to publish your data set is that you create a git repository in the corresponding group.
The following is an example step by step guide on how to publish a dataset, in this
case a NEEM:

1. Create a repository in the NEEM group https://neemgit.informatik.
uni-bremen.de/neems

2. Clone the empty repository and initialize DVC in this repository

1 git clone git@neemgit.informatik.uni-bremen.de:neems/hello-
neem2.git

2 cd hello-neem2
3 dvc init

Listing 5.7. Initialize DVC using dvc init

3. Define the remote storage, to let DVC store your data set:

1 dvc remote add -d origin hdfs://hadoop@134.102.137.65:9000/
neems/hello-neem2

Listing 5.8. Define remote storage using dvc remote add

4. You can now add your episodes via DVC and push it:

1 dvc add episodes/1599727087.4392.zip
2 dvc push

Listing 5.9. Add data and pushing using dvc add and dvc push

5. After pushing your data, you still need to push the DVC data placeholder6:

6.dvc files: https://dvc.org/doc/user-guide/project-structure/dvc-files

https://neemgit.informatik.uni-bremen.de/neems
https://neemgit.informatik.uni-bremen.de/neems

NEEM Handbook 39

1 git add episodes/1599727087.4392.zip.dvc
2 git commit -m "Some commit message"
3 git push

Listing 5.10. Downloading a NEEM using dvc pull

Publishing other data set types will work in a familiar fahion, but you need to create
the repository in the corresponding group and define the remote storage based on your
data set type:

Raw data
hdfs://hadoop@134.102.137.65:9000/raw/<your-repo-name>

NEEMs
hdfs://hadoop@134.102.137.65:9000/neems/<your-repo-name>

Transformed Data
hdfs://hadoop@134.102.137.65:9000/transformed_data/<your-repo-name>

In future, you will be able to publish your neemifier and transformers. This will
allow to share your tools easily with the community and also automatize your data
transformation and learning pipeline.

hdfs://hadoop@134.102.137.65:9000/raw/<your-repo-name>
hdfs://hadoop@134.102.137.65:9000/neems/<your-repo-name>
hdfs://hadoop@134.102.137.65:9000/transformed_data/<your-repo-name>

6

NEEM-Acquisition

S. KORALEWSKI, A. HAWKIN

This chapter focuses on the acquisition process of NEEMs . At first, we will pro-
vide the tools and procedures to acquire episodic memories from robots performing
experiments. The second section focuses on the NEEM acquisition from virtual
reality.

6.1 Data Structure

We are using MongoDB to capture the data structures of the NEEMs . If you will
use the KnowRob interface to create your NEEMs then your NEEM will consist
of at least 3 folders - annotations, inferred and triples. The NEEM-narrative and
NEEM-experience are stored as a collection of BSON 7 files. Each folder should
contain a BSON file and metafile stored as JSON. The metafile will include addi-
tional information related to NEEMs . This additional meta information is useful
for searching NEEM on openEASE platform and hence needs to be provided by
NEEM creator while NEEM acquisition time. An example of such information is as
displayed below:

Each generated NEEM stores also the complete state of the SOMA ontology which
was used during the acquisition process. The benefit of this is that while loading a
NEEM , it is not required to keep track to load the correct SOMA version. In the
following, we will give an overview which information is contained in those folders
generated by KnowRob :

annotations The annotations collection contains annotations(comments) which are
asserted to the concepts of the ontology.

7http://bsonspec.org/faq.html

42 Beetz et al.

1 {
2 "_id" : ObjectId("5f22b1f512db5aed7cd1961b"),
3 "created_by" : "seba",
4 "created_at" : "2020-07-21T06:54:25+00:00",
5 "model_version" : "0.1",
6 "description" : "NEEM for robot making pizza.",
7 "keywords" : [
8 "Pizza",
9 "Robot"

10],
11 "url" : "Placeholder for the NEEM hub repository url",
12 "name" : "NEEM for robot making pizza",
13 "activity" : {
14 "name" : "Pizza making",
15 "url" : "Placeholder for the url/uri of Activity concept

defined in ontology"
16 },
17 "environment" : "Kitchen",
18 "image" : "placeholder for image url for showing neem image

on openEASE",
19 "agent" : "Robot"
20 }

Fig. 4. The meta data structure.

inferred The inferred collection contains triples which were inferred and not asserted
during the logging process. Inference processes can be triggered when triples are
asserted directly to the knowledge base.

triples The triples collection contains all triples which were asserted into the knowl-
edge base during run time.

6.1.1 Triple data as JSON object

Triple data can also be provided in form of JSON documents, where triples are
represented as subject, predicate and object. Subjects and objects are identified by an
Internationalized Resource Identifier (IRI), which is pointing to concepts or instances
defined in the SOMA ontology. A triple can either link subject with an object, or
can link subject with data value which is represented using one of the base types:
string, boolean, and a number. Whereas, the predicate is named by the IRI pointing to
property concepts mentioned in the SOMA ontology. It is also possible to provide
additional time scope fields ‘since‘ and ‘until‘ to indicate that the given triple is valid
for the given time scope. These values are considered here in seconds from when
an experiment has started being recorded. An example of such a JSON document is
given below where the Salad PMRVYPJH has a patient role from 27.739th second

NEEM Handbook 43

till 29.075. By default triple is valid for the infinite time when the scope parameters
are not specified.

1 [
2 {
3 "s": "http://www.ease-crc.org/ont/SOMA.owl#Salad_PMRVYPJH",
4 "p": "http://www.ontologydesignpatterns.org/ont/dul/DUL.owl

#hasRole",
5 "o": "http://www.ease-crc.org/ont/SOMA.owl#Patient_YGJUVNDR

",
6 "since": 27.739,
7 "until": 29.075
8 }
9]

Fig. 5. The triple data structure.

It is important to note that, this is an intermediate data format which is not equivalent
with how the NEEM narrative is actually stored in databases. The format described
here rather serves as an easy-to-use interchange format.

6.2 Robot NEEMs

This section describes how to generate NEEMs from experiments performed by the
robot either in simulation or in the real world.

6.2.1 Prerequisite

Before you are intending to generate your episodic memories, make sure you are
familiar with the Cognitive Robot Abstract Machine (CRAM)8 system and it is
installed on your machine. CRAM is a planning framework which allows to design
high-level plan for robots. This section requires that your robot plan is written in
CRAM to be able to generate NEEMs . However, once you are familiar with our
planning and logging components, you will be able to port those components to your
preferred planning tool.

To generate NEEMs you will need also the following software components to be
installed:

8http://cram-system.org/cram

http://cram-system.org/cram

44 Beetz et al.

• A MongoDB server with at least version 3.4.109

• KnowRob 10

• CRAM ontology11

6.2.2 Recording Narrative Enabled Episodic Memories

Our recording mechanism captures every executed CRAM action and its parameter.
In addition, the logger puts the actions in relation to each other by creating a hierarchy
which is described in Section 3.3.3.

Before you can begin to record your own NEEMs , you need to include the ”cram-
cloud-logger” package into your CRAM plan. This package is by default included
with your CRAM installation. To start and finish the logging process, run ccl::start-
episode before your plan execution and when you are finished with your experiment
run ccl::stop-episode. It can look like the following:

1 (ccl::start-episode)
2 (urdf-proj:with-simulated-robot (demo::demo-random nil))
3 (ccl::stop-episode)

Listing 6.1. Steps to Record an Episode for a CRAM Plan

The generated NEEM will be stored per default in ”˜/knowrob-memory”. Keep in
mind to have KnowRob launched before starting the NEEM recording. You can start
KnowRob via:

1 roslaunch knowrob_memory knowrob.launch

Listing 6.2. How to Start KnowRob

By default your NEEM will be stored under ”˜/knowrob-memory/<timestamp
>”.

6.2.3 Add Semantic Support to your Designed Plans

The disadvantage of having a strong semantic knowledge representation is that the
used ontology requires updates when semantic knowledge has to be extended. Cur-
rently, the EASE project focuses on the support to record table setting/cleaning-up
experiments. If you want to create NEEMs for e.g. autonomous cars, you will need
to extend the SOMA ontology and the recording mechanism with your required

9https://www.mongodb.com/
10https://github.com/knowrob/knowrob
11https://github.com/ease-crc/cram_knowledge

https://www.mongodb.com/
https://github.com/knowrob/knowrob
https://github.com/ease-crc/cram_knowledge

NEEM Handbook 45

actions, parameters and objects. How to extend the SOMA ontology is described in
Section ??. In the following subsection, we will describe how you can extend the
CRAM recording mechanism to support your required semantic knowledge.

New Tasks Definition

If you want to semantically record new tasks such as e.g. accelerating or breaking, you
need to define them in the ontology as described in Section ??. Tasks which are not
defined in the ontology, will be logged as PhysicalTask. The PlanExecution instance
pointing to the PhysicalTask will have a comment attached with the statement ”Un-
known Action: <CRAM-ACTION-NAME>”, where <CRAM-ACTION-NAME>is
the action name you defined in your plan. After you defined your new actions in
SOMA , please open the ”knowrob-action-name-handler.lisp” in the ”cram-cloud-
logger” package and add your new actions in the format:

1 (defun init-action-name-mapper ()
2 (let ((action-name-mapper (make-instance ’ccl::

cram-2-knowrob-mapper))
3 (definition
4 ’(("reaching" "Reaching")
5 ("retracting" "Retracting")
6 ("lifting" "Lifting")
7 ("opening" "Opening")
8 ("<CRAM-ACTION-NAME>" "<SOMA-ONTOLOGY-NAME>")

Listing 6.3. Linking the CRAM Action to the Ontology Concept

where <CRAM-ACTION-NAME> is the name of your action used in the cram
plan and <SOMA-ONTOLOGY-NAME> is the concept name of the task de-
fined in SOMA . With this step you added successfully the new action to the
CRAM NEEM episodic memory logger.

Adding New Objects

Unknown objects will be logged as instance of DesignedArtifact. In addition, a
comment like ”Unknown Object: <CRAM-OBJECT-TYPE>” will be attached to
this instance. <CRAM-OBJECT-TYPE> indicates which object you need to define
in the SOMA ontology. After you added your object to the ontology, open the ”utils-
for-perform.lisp” in the ”cram-cloud-logger” package and include the new object in
the hash table generate in ”get-ease-object-lookup-table” like:

1 (defun get-ease-object-lookup-table()
2 (let ((lookup-table (make-hash-table :test ’equal)))
3 (setf (gethash "BOWL" lookup-table) "’http://www.ease-crc.

org/ont/SOMA.owl#Bowl’")
4 (setf (gethash "CUP" lookup-table) "’http://www.ease-crc.

org/ont/SOMA.owl#Cup’")

46 Beetz et al.

5 (setf (gethash "<CRAM-OBJECT-TYPE>" lookup-table) "’<
SOMA-ONTOLOGY-ENTITY-IRI>’")

6 lookup-table))

Listing 6.4. Linking the CRAM Object to the Ontology Concept

where the key is <CRAM-OBJECT-TYPE>, the object type used in the CRAM plan,
and <SOMA-ONTOLOGY-ENTITY-URI>the value which is the uri pointing to the
object concept created in SOMA .

Adding New Failure

Unknown CRAM failures will be logged as instance of Failure. In addition, a com-
ment like ”Unknown failure: <CRAM-FAILURE-NAME>” will be attached to the
instance. <CRAM-FAILURE-NAME> indicates which failure you need to define
in the ontology. After you added your failure to the ontology, open the ”failure-
handler.lisp” in the ”cram-cloud-logger” package and add your new failure in the
format:

1 (defun init-failure-mapper ()
2 (let ((failure-mapper (make-instance ’ccl::

cram-2-knowrob-mapper))
3 (definition
4 ’(("cram-common-failures:low-level-failure" "

LowLevelFailure")
5 ("cram-common-failures:actionlib-action-timed-out" "

ActionlibTimeout")
6 ("<CRAM-FAILURE-NAME>" "<SOMA-ONTOLOGY-NAME>")

Listing 6.5. Linking the CRAM Action to the Ontology Concept

where <CRAM-FAILURE-NAME> is the name of your failure defined in the cram
plan and <SOMA-ONTOLOGY-NAME>. With this step you added successfully the
support of the new failure to CRAM NEEM episodic memory logger.”.

6.2.4 Summary

This section provided you the fundamentals, how you can utilize the SOMA ontol-
ogy and CRAM to create your own NEEMs . Under the following link (https://
neemgit.informatik.uni-bremen.de/neems/ease-2020-pr2-setting-up-table),
you can download some robot NEEMs to have an overview of a generated NEEM .

https://neemgit.informatik.uni-bremen.de/neems/ease-2020-pr2-setting-up-table
https://neemgit.informatik.uni-bremen.de/neems/ease-2020-pr2-setting-up-table

NEEM Handbook 47

6.3 VR NEEMs

This section will describe how NEEMs can be generated within a Virtual Reality
environment and how they can be utilized within CRAM plans to help a robot perform
everyday household activities. The use of VR allows us as humans to show the robot an
action we want it to perform within a variety of different environments.This facilitates
learning of a lot of common sense knowledge, e.g. where the objects necessary to
perform a specific action are commonly stored within the environment , which objects
are needed for a specific action, where the human user was standing when he was
grasping a certain object, how the objects were arranged on a surface relative to one
another and how the human user grasped them.

The example scenario used here is the breakfast setting scenario. This means that the
robot is supposed to set up the table with a bowl, cup and a spoon in preparation of a
breakfast cereal meal.

6.3.1 Prerequisite

Before VR-NEEM generation can take place, the proper VR-environment needs
to be set up within the Unreal Engine, including the installation of the USemLog
Plugin, which records the NEEMs and generates the appropriate .owl files. The plugin
and a setup of a kitchen environment can be found within the RobCog project. The
KnowRob and MongoDB installation are the same as in the section above. In order
to be able to use the NEEMs within CRAM , the data first needs to be transferred
into the MongoDB and KnowRob. This can be achieved by running the vr neems to
knowrob scripts. Please refer to the README.md for execution examples.

To summarize, you will need to install the following components:

• Unreal Engine12 Version 4.22.3

• RobCog13

• vr neems to knowrob14

• knowrob robcog

• CRAM15 Branch: boxy-melodic

12https://www.unrealengine.com/
13https://github.com/robcog-iai/RobCoG
14https://github.com/ease-crc/vr_neems_to_knowrob
15https://github.com/cram2/cram.git

https://www.unrealengine.com/
https://github.com/robcog-iai/RobCoG
https://github.com/ease-crc/vr_neems_to_knowrob
https://github.com/cram2/cram.git

48 Beetz et al.

6.3.2 Recording Virtual Reality Narrative Enabled Episodic Memories

Check if all items that you want to appear in the NEEMs , have a tag under which
they will be represented within the ontology. You can check the tag by clicking any
item within the kitchen environment, and going to the Actor section in the details
pane. Click the little arrow to expand the section, and also expand the Tags section.
There you should see something like this:

1

2 SemLog;Class,IAIIslandArea;Id,tpzV6l885UGL785BwZFHYQ;

This string defines the class of the item and it’s id. More information can be added
here, depending on the item and the ontology and the level of detail desired within the
classification. This is also very important when introducing new items to the Virtual
Reality setup. Items which do not have these tags, will not be included in the recorded
NEEM data.

Once everything is set up and all potentially new items are within the virtual reality
environment, the recording can begin. First, the semantic map can be automatically
generated by going to the RobCog pane within the Unreal Engine editor, and clicking
the SemanticMap button. After this, the generated semantic map should be located
in the RobCog/Episodes directory. It contains the initial state of the virtual reality
environment, including the position and rotation of all the furniture objects and also
their classifications.

The next step is then to start the virtual reality simulation and perform some actions
within it, e.g. setting up a breakfast table. The position of the VR-headset and con-
trollers is being tracked the entire time, as well as the interactions of the virtual hands
with the environment and objects. Picking up an object would generate a Grasping-
Something-action. Placing an object down on a table would generate a Contact-Action
between the object and the surface it has been placed upon. All these interactions can
later on be queried for.

Once all the desired actions are complete, the simulation can be stopped and an
EventData ID directory appears in the RobCog/Episodes directory. It contains and
EventData ID.owl file, an EventData ID.html file, which visualizes all the occurred
events, and a RawData ID.json, which contains all the information about the per-
formed actions and events. The last file is the one that needs to be uploaded into the
MongoDB.

6.3.3 Transferring VR-NEEMs into the Knowledge Base

Please refer to the README of these scripts https://github.com/ease-crc/
vr_neems_to_knowrob in order to import the VR-NEEMs into KnowRob and
MongoDB. More information about the import, how it generally works and why the
scripts were created the way they are, please refer to: http://cram-system.

https://github.com/ease-crc/vr_neems_to_knowrob
https://github.com/ease-crc/vr_neems_to_knowrob
http://cram-system.org/tutorials/advanced/unreal#importing_new_episode_data_into_mongodb_and_knowrob_additional_information

NEEM Handbook 49

org/tutorials/advanced/unreal#importing_new_episode_data_
into_mongodb_and_knowrob_additional_information.

6.3.4 Using VR-NEEM Data in CRAM plans

There is a demo within CRAM which uses the data collected in VR, including a
tutorial on how to run it. It can be found here: http://cram-system.org/
tutorials/advanced/unreal. In this demo the robot performs a pick and
place task, picking up a cup, bowl and a spoon from the sink counter, and placing
them onto the kitchen island. In order to do this, CRAM queries KnowRob for the
following information:

• where/from which surface was the object picked up?

• where was the human user standing when he was picking up/placing the object?

• on which surface and where was the object placed? (In relation to other objects)

• with which hand was the object grasped?

• from which direction (top,left,right...) was the object grasped?

Since the virtual reality kitchen can look very different than the one the robot is acting
in, all of the poses are calculated relative to the respective surfaces and each other.
For example, the spoon is always placed to the right of the bowl.

For more information on how CRAM interacts with KnowRob and how json-
prolog can be used within CRAM , please refer to http://cram-system.org/
tutorials/intermediate/json_prolog

http://cram-system.org/tutorials/advanced/unreal#importing_new_episode_data_into_mongodb_and_knowrob_additional_information
http://cram-system.org/tutorials/advanced/unreal#importing_new_episode_data_into_mongodb_and_knowrob_additional_information
http://cram-system.org/tutorials/advanced/unreal#importing_new_episode_data_into_mongodb_and_knowrob_additional_information
http://cram-system.org/tutorials/advanced/unreal
http://cram-system.org/tutorials/advanced/unreal
http://cram-system.org/tutorials/intermediate/json_prolog
http://cram-system.org/tutorials/intermediate/json_prolog

7

NEEM Quick-start Guide

A. VYAS, S. JONGEBLOED

In this chapter we present a checklist for the NEEMs creation process to help the
users in generating NEEMs in case no existing NEEM-logger can be used.

7.1 NEEM Checklist

7.1.1 Kinematic information with visualization meshes

In order to visualize NEEM experiment in openEASE , you should have the following
files available:

• Agent meshes and urdf files

• Agent owl file corresponding to urdf. Refer Figure 8.1 for agent owl file example.

– An owl file should contain all of the links from urdf.

– An agent structure should be created with appropriate SOMA concept.

– Required kinematic information should be provided in owl file pointing to
correct urdf file name. Refer Figure 8.1, individuals for kinematics informa-
tion.

• Environment meshes and urdf files

• Environment owl file corresponding to urdf. Refer Figure 8.2 for agent owl file
example.

– An owl file should contain all of the links from urdf.

– An Environment structure should be created with appropriate SOMA concept.

52 Beetz et al.

– Required kinematic information should be provided in owl file pointing to
correct urdf file name. Refer Figure 8.2, individuals for kinematics informa-
tion.

7.1.2 NEEM Data format

NEEM data is represented in tf and triple collections. This data should automati-
cally be in the correct format if KnowRob is used to log the information. But in
case you want to create NEEM data without Knowrob, please follow the checklist
below:

• The following steps will make sure the correct tf data format is provided. An
example of such format is presented in Figure 2.

– Tf data is provided as individual json documents not as the list/array of json
documents.

– The coordinate system is right handed.

– Correct tf tree is presented in the data.

– Joint rotation is provided in quaternion.

– Position data is logged in meters.

• The following steps will make sure the correct triple data format is provided. An
example of such format is presented in Figure 5.

– Triple data is provided as an array of json document.

– Correct SOMA concepts used from NEEM-narrative part.

7.1.3 Semantic Annotation

In this chapter we discuss the necessary semantic annotation that is stored in the triple
collection. First we will list the semantic information that is necessary to generate a
simple NEEM:

• Necessary steps when starting the logging:

– Create the episode and add dul:isSettingFor relation between the episode and
the robots and locations (see 3.3.6)

• Create an hierachy of actions

– Add the task that is executed during the action (see 3.3.5)

– Add start and endtime (as unix timestamps) to action (see 3.3.1)

NEEM Handbook 53

– Repeat the above points for all sub-actions of the Action-Hierachy, and link
them to the parent-actions (see 3.3.3)

– For the top-level action: Link the action to the created Episode

Now we we will list some additional semantic annotation that would be helpful for
the future use of the logged NEEM:

• Add additional informations to better classify an action:

– Add the performing agents (see 3.3.2)

– Add objects that are participating in the action (see 3.3.2)

– Add conceptualization to the objects in an action by adding roles (see 3.2)

– Add executed motions to an action (see 3.1)

In general, additional semantic annotations can be added as needed. In the next chapter
we show how this annotation can be implemented with KnowRob.

7.1.4 Semantic Annotation: KnowRob

The easiest way to generate a correct semantic annotation described in 7.1.3 is using
KnowRob. First we will describe which queries are necessary to generate a simple
NEEM. The used concepts for agents, objects, roles etc. are examples. Please find the
correct concepts for your usage in SOMA16.

• Necessary steps when starting the logging:

– Load the OWL Files collected according to 7.1.1, e.g.:

1 tripledb_load(’package://knowrob/owl/robots/PR2.owl’)
2

– Load the URDF Files and link them to the corresponding robot/location from
the OWL File, e.g.:

1 urdf_load(’http://knowrob.org/kb/PR2.owl#PR2_0’, ’
package://knowrob/urdf/pr2.urdf’, [load_rdf])

2

– Create the episode: tell(is episode(Episode))

– Add setting for relations for robots and locations:

1 is_setting_for(Episode,’http://knowrob.org/kb/PR2.owl#
PR2_0’)

2

16https://ease-crc.github.io/soma

54 Beetz et al.

• Log the Action-Hierachy

– Create an action, e.g.:

1 tell(is_action(Action))
2

– Add the task that is executed during the action, e.g.:

1 tell([has_type(Tsk,soma:’Transporting’),
2 executes_task(Action,Tsk)])
3

– Add start and endtime (as unix timestamps) to action, e.g.:

1 tell(occur(Act) during [Start, End])
2

– Repeat the above points for all sub-actions of the Action-Hierachy, and link
them to the parent-actions:

1 tell(has_subevent(ParentAct,Action))
2

– For the top-level action: Link the action to the created Episode, e.g.:

1 tell(is_setting_for(Episode,Action))
2

Now we we will list some additional semantic annotation to add more information to
the logged NEEM:

• Add additional informations to better classify an action:

– Add the performing agents, e.g.:

1 tell(is_performed_by(Action,pr2:’PR2_0’))
2

– Add objects that are participating in the action, e.g.:

1 tell(has_participant(Action,soma:’Milk_0’), \)
2

– Conceptualize objects and agents in an action by adding roles, e.g.:

1 tell([has_type(RobotRole, soma:’AgentRole’),’
2 has_role(pr2:’PR2_0’, RobotRole) during Action,’])
3

– Add executed motions to an action, e.g.:

1 tell([has_type(Mot,soma:’LimbMotion’),
2 is_classified_by(Action,Mot)])
3

8

Appendix

8.1 Agent owl file

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns="http://knowrob.org/kb/avatar-skeleton.owl#"
3 xml:base="http://knowrob.org/kb/avatar-skeleton.owl"
4 xmlns:srdl2="http://knowrob.org/kb/srdl2.owl#"
5 xmlns:srdl2-cap="http://knowrob.org/kb/srdl2-cap.owl#

"
6 xmlns:owl="http://www.w3.org/2002/07/owl#"
7 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
8 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
9 xmlns:urdf="http://knowrob.org/kb/urdf.owl#"

10 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
11 xmlns:qudt-unit="http://qudt.org/vocab/unit#"
12 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns

#"
13 xmlns:soma="http://www.ease-crc.org/ont/SOMA.owl#"
14 xmlns:xml="http://www.w3.org/XML/1998/namespace"
15 xmlns:srdl2-comp="http://knowrob.org/kb/srdl2-comp.

owl#"
16 xmlns:knowrob="http://knowrob.org/kb/knowrob.owl#"
17 xmlns:dul="http://www.ontologydesignpatterns.org/ont/

dul/DUL.owl#">
18

19 <!-- === -->
20 <!-- | Ontology Imports | -->
21 <!-- === -->
22

23 <owl:Ontology rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl">

24 <owl:imports rdf:resource="http://www.ease-crc.org/ont
/SOMA.owl"/>

56 Beetz et al.

25 </owl:Ontology>
26

27 <!--
28 //////////////
29 //
30 // Classes
31 //
32 //////////////
33 -->
34

35

36 <!-- http://www.ontologydesignpatterns.org/ont/dul/DUL.owl
#PhysicalObject -->

37 <owl:Class rdf:about="http://www.ontologydesignpatterns.
org/ont/dul/DUL.owl#PhysicalObject"/>

38

39

40

41 <owl:Class rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton">

42 <rdfs:subClassOf rdf:resource="http://www.
ontologydesignpatterns.org/ont/dul/DUL.owl#Agent"/>

43 </owl:Class>
44

45

46 <!--
47 //////////////
48 //
49 // Individuals
50 //
51 //////////////
52 -->
53

54 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_1">

55 <rdf:type rdf:resource="http://www.
ontologydesignpatterns.org/ont/dul/DUL.owl#PhysicalBody"/>

56 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">Hip</urdf:hasBaseLinkName>

57 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_leg_l"/>

58 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_leg_r"/>

59 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_middle_body"/>

60 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_head"/>

61 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_arm_r"/>

NEEM Handbook 57

62 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_arm_l"/>

63 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_hand_l"/>

64 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_hand_r"/>

65

66 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RToe</urdf:hasEndLinkName>

67 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">LToe</urdf:hasEndLinkName>

68 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org/2001/
XMLSchema#string">Chest</urdf:hasEndLinkName>

69 </owl:NamedIndividual>
70

71 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_leg_l">

72 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Leg"/>

73 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">Hip</urdf:hasBaseLinkName>

74 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LToe</urdf:hasEndLinkName>

75 </owl:NamedIndividual>
76

77 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_leg_r">

78 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Leg"/>

79 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">Hip</urdf:hasBaseLinkName>

80 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RToe</urdf:hasEndLinkName>

81 </owl:NamedIndividual>
82

83 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_middle_body">

84 <rdf:type rdf:resource="http://www.
ontologydesignpatterns.org/ont/dul/DUL.owl#PhysicalBody"/>

85 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">Hip</urdf:hasBaseLinkName>

86 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">Chest</urdf:hasEndLinkName>

87 </owl:NamedIndividual>
88

89 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_head">

90 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Head"/>

58 Beetz et al.

91 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">Chest</urdf:hasBaseLinkName>

92 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">Head</urdf:hasEndLinkName>

93 </owl:NamedIndividual>
94

95 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_arm_l">

96 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Arm"/>

97 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">Chest</urdf:hasBaseLinkName>

98 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LHand</urdf:hasEndLinkName>

99 </owl:NamedIndividual>
100

101 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_arm_r">

102 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Arm"/>

103 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">Chest</urdf:hasBaseLinkName>

104 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RHand</urdf:hasEndLinkName>

105 </owl:NamedIndividual>
106

107 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_r_hand_null">

108 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Hand"/>

109 <urdf:hasURDFName>RHand</urdf:hasURDFName>
110 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_r_index_null"/>
111 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_r_middle_null"/>
112 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_r_pinky_null"/>
113 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_r_ring_null"/>
114 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_r_thumb_null"/>
115 </owl:NamedIndividual>
116

117 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_r_index_null">

118 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

119 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RIndex1</urdf:hasBaseLinkName>

NEEM Handbook 59

120 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RIndex3</urdf:hasEndLinkName>

121 </owl:NamedIndividual>
122

123

124 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_r_middle_null">

125 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

126 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RMiddle1</urdf:hasBaseLinkName>

127 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RMiddle3</urdf:hasEndLinkName>

128 </owl:NamedIndividual>
129

130 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_r_pinky_null">

131 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

132 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RPinky1</urdf:hasBaseLinkName>

133 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RPinky3</urdf:hasEndLinkName>

134 </owl:NamedIndividual>
135

136 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_r_ring_null">

137 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

138 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RRing1</urdf:hasBaseLinkName>

139 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RRing3</urdf:hasEndLinkName>

140 </owl:NamedIndividual>
141

142 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_r_thumb_null">

143 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

144 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RThumb1</urdf:hasBaseLinkName>

145 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">RThumb3</urdf:hasEndLinkName>

146 </owl:NamedIndividual>
147

148 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_l_hand_null">

149 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Hand"/>

60 Beetz et al.

150 <urdf:hasURDFName>LHand</urdf:hasURDFName>
151 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">LHand</urdf:hasBaseLinkName>
152 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">LIndex1</urdf:hasEndLinkName>
153 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">LMiddle1</urdf:hasEndLinkName>
154 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">LPinky1</urdf:hasEndLinkName>
155 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">LRing1</urdf:hasEndLinkName>
156 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org

/2001/XMLSchema#string">LThumb1</urdf:hasEndLinkName>
157 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_l_index_null"/>
158 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_l_middle_null"/>
159 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_l_pinky_null"/>
160 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_l_ring_null"/>
161 <dul:hasComponent rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_l_thumb_null"/>
162 </owl:NamedIndividual>
163

164

165 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_l_index_null">

166 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

167 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LIndex1</urdf:hasBaseLinkName>

168 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LIndex3</urdf:hasEndLinkName>

169 </owl:NamedIndividual>
170

171 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_l_middle_null">

172 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

173 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LMiddle1</urdf:hasBaseLinkName>

174 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LMiddle3</urdf:hasEndLinkName>

175 </owl:NamedIndividual>
176

177 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_l_pinky_null">

NEEM Handbook 61

178 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

179 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LPinky1</urdf:hasBaseLinkName>

180 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LPinky3</urdf:hasEndLinkName>

181 </owl:NamedIndividual>
182

183 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_l_ring_null">

184 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

185 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LRing1</urdf:hasBaseLinkName>

186 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LRing3</urdf:hasEndLinkName>

187 </owl:NamedIndividual>
188

189 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
avatar_skeleton.owl#avatar_skeleton_l_thumb_null">

190 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#Finger"/>

191 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LThumb1</urdf:hasBaseLinkName>

192 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">LThumb3</urdf:hasEndLinkName>

193 </owl:NamedIndividual>
194

195 <!-- Individuals for kinematics information -->
196 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/

Kitchen-clash-agent.owl#InformationObject_KFLDFLKH">
197 <rdf:type rdf:resource="http://www.ease-crc.org/ont/

SOMA.owl#KinoDynamicData"/>
198 <dul:isAbout rdf:resource="http://knowrob.org/kb/

avatar_skeleton.owl#avatar_skeleton_1"/>
199 </owl:NamedIndividual>
200

201 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
Kitchen-clash-agent.owl#InformationRealization_1RTUIRGH">

202 <rdf:type rdf:resource="http://www.
ontologydesignpatterns.org/ont/dul/IOLite.owl#
DigitalResource"/>

203 <dul:realizes rdf:resource="http://knowrob.org/kb/
Kitchen-clash-agent.owl#InformationObject_KFLDFLKH"/>

204 <soma:hasPersistentIdentifier rdf:datatype="http://www
.w3.org/2001/XMLSchema#string">ElanHumanSkeleton</
soma:hasPersistentIdentifier>

205 <soma:hasDataFormat rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">URDF</soma:hasDataFormat>

62 Beetz et al.

206 </owl:NamedIndividual>
207

208 </rdf:RDF>

Listing 8.1. Agent owl file

8.2 Environment owl file

1 <?xml version="1.0"?>
2 <rdf:RDF xmlns="http://knowrob.org/kb/elan-map.owl#"
3 xml:base="http://knowrob.org/kb/elan-map.owl"
4 xmlns:srdl2="http://knowrob.org/kb/srdl2.owl#"
5 xmlns:srdl2-cap="http://knowrob.org/kb/srdl2-cap.owl#

"
6 xmlns:owl="http://www.w3.org/2002/07/owl#"
7 xmlns:owl2xml="http://www.w3.org/2006/12/owl2-xml#"
8 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
9 xmlns:urdf="http://knowrob.org/kb/urdf.owl#"

10 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
11 xmlns:qudt-unit="http://qudt.org/vocab/unit#"
12 xmlns:iai-Player="http://knowrob.org/kb/elan-map.owl#

"
13 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns

#"
14 xmlns:soma="http://www.ease-crc.org/ont/SOMA.owl#"
15 xmlns:xml="http://www.w3.org/XML/1998/namespace"
16 xmlns:srdl2-comp="http://knowrob.org/kb/srdl2-comp.

owl#"
17 xmlns:knowrob="http://knowrob.org/kb/knowrob.owl#"
18 xmlns:dul="http://www.ontologydesignpatterns.org/ont/

dul/DUL.owl#">
19 <owl:Ontology rdf:about="http://knowrob.org/kb/elan-map.

owl">
20 <owl:imports rdf:resource="http://www.ease-crc.org/ont

/SOMA.owl"/>
21 </owl:Ontology>
22

23 <!--
24 ///////////////
25 //
26 // Classes
27 //
28 //////////////
29 -->
30

31

32

33 <!--

NEEM Handbook 63

34 //////////////
35 //
36 // Individuals
37 //
38 //////////////
39 -->
40

41

42 <!-- http://knowrob.org/kb/elan-map.owl#map_1 -->
43

44 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/elan
-map.owl#map_1">

45 <rdf:type rdf:resource="http://www.
ontologydesignpatterns.org/ont/dul/DUL.owl#PhysicalObject"
/>

46 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">floor</urdf:hasBaseLinkName>

47 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
elan-map.owl#table1_1"/>

48 <dul:hasComponent rdf:resource="http://knowrob.org/kb/
elan-map.owl#table2_1"/>

49 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">table1</urdf:hasEndLinkName>

50 <urdf:hasEndLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">table2</urdf:hasEndLinkName>

51 </owl:NamedIndividual>
52

53 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/elan
-map.owl#table1_1">

54 <rdf:type rdf:resource="http://www.
ontologydesignpatterns.org/ont/dul/DUL.owl#PhysicalObject"
/>

55 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">table1</urdf:hasBaseLinkName>

56 </owl:NamedIndividual>
57

58 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/elan
-map.owl#table2_1">

59 <rdf:type rdf:resource="http://www.
ontologydesignpatterns.org/ont/dul/DUL.owl#PhysicalObject"
/>

60 <urdf:hasBaseLinkName rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">table2</urdf:hasBaseLinkName>

61 </owl:NamedIndividual>
62

63 <!-- Individuals for kinematics information -->
64 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/

Kitchen-clash-agent.owl#InformationObject_KFLDFGHj">

64 Beetz et al.

65 <rdf:type rdf:resource="http://www.ease-crc.org/ont/
SOMA.owl#KinoDynamicData"/>

66 <dul:isAbout rdf:resource="http://knowrob.org/kb/elan-
map.owl#map_1"/>

67 </owl:NamedIndividual>
68

69 <owl:NamedIndividual rdf:about="http://knowrob.org/kb/
Kitchen-clash-agent.owl#InformationRealization_1RTUPDFG">

70 <rdf:type rdf:resource="http://www.
ontologydesignpatterns.org/ont/dul/IOLite.owl#
DigitalResource"/>

71 <dul:realizes rdf:resource="http://knowrob.org/kb/
Kitchen-clash-agent.owl#InformationObject_KFLDFGHj"/>

72 <soma:hasPersistentIdentifier rdf:datatype="http://www
.w3.org/2001/XMLSchema#string">ElanMap</
soma:hasPersistentIdentifier>

73 <soma:hasDataFormat rdf:datatype="http://www.w3.org
/2001/XMLSchema#string">URDF</soma:hasDataFormat>

74 </owl:NamedIndividual>
75

76

77 </rdf:RDF>

Listing 8.2. Environment owl file

NEEM Handbook 65

References

[1] Claudio Masolo, Stefano Borgo, Aldo Gangemi, Nicola Guarino, and Alessandro
Oltramari. WonderWeb deliverable D18 ontology library (final). Technical report,
IST Project 2001-33052 WonderWeb: Ontology Infrastructure for the Semantic
Web, 2003.

	Introduction
	Notation
	Scope
	Overview

	NEEM-Background
	Types of Objects
	Properties of Objects
	Views on Objects
	Appearance
	Structure
	Kinematics
	Dynamics
	Naive physics

	Data Formats
	URDF
	DAE

	NEEM-Narrative
	Types of Events
	Roles of Objects
	Views on Events
	Occurrence
	Participation
	Composition
	Transformation
	Conceptualization
	Contextualization

	NEEM-Experience
	Kinematics
	Pose data

	NEEM-Hub
	Prerequisite
	Downloading
	Publishing

	NEEM-Acquisition
	Data Structure
	Triple data as JSON object

	Robot NEEMs
	Prerequisite
	Recording Narrative Enabled Episodic Memories
	Add Semantic Support to your Designed Plans
	Summary

	VR NEEMs
	Prerequisite
	Recording Virtual Reality Narrative Enabled Episodic Memories
	Transferring VR-NEEMs into the Knowledge Base
	Using VR-NEEM Data in CRAM plans

	NEEM Quick-start Guide
	NEEM Checklist
	Kinematic information with visualization meshes
	NEEM Data format
	Semantic Annotation
	Semantic Annotation: KnowRob

	Appendix
	Agent owl file
	Environment owl file
	References

